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Abstract 

Inadequate development of the fetal autonomic nervous 

system (ANS) during gestation can lead to health problems 

not only in the perinatal period but well into adulthood. 

Assessing fetal heart rate variability (fHRV) may allow for 

tracking fetal autonomic development and identification of 

abnormalities. A HRV methodology which is well-suited to 

this purpose is phase rectified signal averaging (PRSA). 

While PRSA has been used in assessing autonomic 

dysfunction related to complications such as fetal growth 

restriction, knowledge on how PRSA features change with 

gestational age is limited. In this paper, we use PRSA to 

analyze a dataset comprising of repeated abdominal ECG 

measurements acquired throughout healthy pregnancy (29 

participants, 184 recordings) to capture how PRSA 

features evolve over the second half of gestation. Results 

show that all features change significantly (p < 0.01), 

typically increasing from 22 to around 31 weeks (likely due 

to quicker signaling between nerve cells, corresponding to 

the rapidly maturing parasympathetic nervous system) and 

then stabilizing or slightly decreasing thereafter owing to 

better control of the heart rate by the mature fetal ANS. We 

conclude that PRSA features change with progressing 

gestation and may be a useful tool for tracking the 

maturation of the fetal ANS.      

 

1. Introduction 

Healthy development of the autonomic nervous system 

(ANS) is essential to a person’s well-being. As early as 

during the gestational period, abnormal autonomic activity 

is associated with fetal abnormalities such as fetal growth 

restriction (FGR) [1]. Furthermore, impaired autonomic 

development can have lifelong consequences; ANS 

immaturity due to perinatal complications such as preterm 

birth can lead to impaired behavior, stress response, and 

mood regulation in adulthood [2]. Subsequently, detecting 

impaired fetal autonomic development would provide 

information to clinicians to support decision-making and 

allow for planning appropriate interventions where 

possible.  

A proxy measure for autonomic regulation is fetal heart 

rate variability (fHRV), which is used to assess fetal well-

being and may be useful in tracking fetal 

neurodevelopment [3,4]. Further compounding the 

potential to track fetal development is the increasing 

availability of wearable fetal HR monitors which record 

the information needed to calculate fHRV.   

However, as poor data quality often impedes fHRV 

analyses [4], the use of HRV methodologies that are more 

robust to noise and missing data would be better suited to 

long-term fHRV monitoring. One such methodology 

which has been gaining interest in this domain is phase 

rectified signal averaging (PRSA), which graphically 

shows the rate and magnitude of heart rate (HR) 

decelerations and accelerations [5]. This HRV 

methodology has been used in identifying fetal 

complications such as acidemia and fetal growth restriction 

[1,6], as well as capturing the effect of gestational diabetes 

mellitus and the administration of betamethasone, a 

medication commonly given to women at risk for preterm 

birth, on the fetus [7,8].  
Still, it is largely unknown how gestational age (GA) 

affects PRSA, limiting its clinical interpretation. As the 

fetal sympathetic and parasympathetic nervous systems 

(SNS and PNS) are continuously developing throughout 

gestation, changes may occur in fHRV as pregnancy 

progresses. Therefore, in this work, we investigate how 

PRSA changes with healthy fetal autonomic development. 
 

2. Methods 

2.1. Dataset 

This paper details a secondary analysis of data collected 

for a previous study [4]. The institutional review board at 

the Máxima Medical Center, Veldhoven, the Netherlands 

issued a waiver for this analysis (reference number 

N21.008). A brief description of the dataset is given here 
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with further details available in the publication outlining 

results from the original study [4].  
Repeated abdominal ECG measurements were acquired 

from 40 healthy, singleton pregnancies at 1000 Hz using a 

non-invasive electrophysiologic monitor (the NEMO 

device, Maastricht Instruments, the Netherlands). 

Measurements were done at approximately 14, 18, 22, 24, 

26, 30, 34, 36, 38, and 40 weeks of gestation while 

participants were lying in a semi-recumbent position. 

Recordings of approximately 45 minutes in duration were 

done between 08:00 and 18:00. Subjects with missing 

recordings (n = 4) or who developed complications (n = 7) 

were excluded, resulting in an eventual analysis of 29 

participants. The pregnant women were 31 ± 4 years old, 

gave birth at 40 weeks ± 10 days of gestation, and had a 

BMI of 24 ± 4 kg/m2 before pregnancy. All pregnancies 

progressed uneventfully and resulted in the delivery of a 

healthy infant.  

 

2.2. Preprocessing 

Abdominal ECG recordings were filtered with a 4th-

order Butterworth bandpass filter (1 to 70 Hz) and a notch 

filter (50 Hz). Fetal R-peaks were extracted with an 

algorithm detailed elsewhere [9]. To remove possibly 

erroneous RR-intervals, any RR-intervals which were 

outside the range of 0.2–1.3 s (46–300 beats per minute 

[4]) or differed from the preceding interval by more than 

20% were excluded. Preprocessing was done in MATLAB 

(MathWorks, USA) while further processing was done in 

Python (PSF, USA). 

Some recordings had sections of data loss, and the 

signals were not of consistent quality throughout the 

recording. Subsequently, for each participant, the five-

minute segment with the highest quality per recording (i.e., 

lowest amount of missing data and unreliable RR-

intervals) was selected for the analysis. If the highest 

quality segment still had more than 25% removed RR-

intervals, the recordings were excluded from the analysis 

(n = 5). In total, 184 recordings were used for the analysis.    

 

2.3. PRSA 

Physiological time-series data are often difficult to 

analyze given that underlying trends in the data may be 

obscured by noise and non-stationarities. PRSA is a 

method designed specifically to identify and elucidate 

quasi-periodicities in such noisy physiological time-series. 

A detailed description of the method can be found in the 

original publication [5]. For the purposes of this paper, we 

give a brief outline of the method:  

Two sets of anchor points (APs) are identified, one set 

corresponding to each acceleration in the heart rhythm and 

the other corresponding to each deceleration. Thereafter, a 

window (length: 2L) is identified around each AP, long 

enough to allow for the visualization of the slowest 

relevant oscillation related to the AP (in our case, L = 25 

RR-intervals). Next, all APs in each set are aligned by their 

common phase (for example, HR decelerations) and 

averaged, resulting in a waveform. The averaging of these 

segments eliminates the noise and non-stationarities 

present in the heart rhythm, and the result is the underlying 

quasi-periodicity in the signal in relation to HR 

accelerations and decelerations, respectively. Quantifying 

the rate and magnitude of periodicity in the heart rhythm 

gives an estimate of the responsiveness of the ANS [5].  
Three sets of features are calculated to quantify this 

response. First, the most established features, which are 

deceleration capacity (DC) and accelerations capacity 

(AC), are calculated as follows:  
 

𝐷𝐶/𝐴𝐶 = [𝑋(0) + 𝑋(1) − 𝑋(−1) − 𝑋(−2)]/4,  (1) 
 

with X representing the resulting waveform from the 

PRSA analysis and X(0) denoting the RR-value at the AP 

[5]. Additionally, the maximum response in HR around the 

AP is determined (the immediate deceleration response 

(IDR) and immediate acceleration response (IAR)) by 

calculating the difference between the highest and lowest 

value in the PRSA waveform within five RR-intervals of 

the AP. Additionally, the slopes corresponding to these 

maximum responses are calculated, namely the slope of the 

deceleration and acceleration responses (SDR and SAR) 

respectively [10].   
 

2.4. Data and statistical analyses 

The data are grouped into seven GA bins for this 

analysis: less than 22 weeks; 22 to 25 weeks; 25 to 28 

weeks; 28 to 31 weeks; 31 to 34 weeks; 34 – 37 weeks; 

above 37 weeks. Since the data in each group were 

typically not normally distributed (as assessed with 

D’Agostino’s K-squared test), the Kruskal–Wallis test is 

used to test whether changes across gestation are 

statistically significant (p < 0.01).  

Furthermore, the median and interquartile range of the 

values are plotted to visualize the potentially dynamic 

changes in PRSA features across gestation. If large 

changes between bins were apparent from the 

visualization, we assessed the differences between the two 

gestational bins using Mann-Whitney U test and Cohen’s 

U1. The latter is a nonparametric effects size test where U1 

= 0.15, U1 = 0.33, and U1= 0.47 suggest small, medium, 

and large effect sizes, respectively [11].  

 

3. Results 

Figure 1 shows the evolution of the PRSA features 

across gestation. All features changed significantly with 

GA: for DC, p = 0.001; for all other features, p < 0.001.  
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Figure 1: Change in PRSA features plotted against GA bins 

as median values with interquartile range. From top-left, 

clockwise: a) AC; b) IAR; c) SAR; d) DC; e) IDR; and f) 

SDR. 

From this visualization (Figure 1) it is apparent that 

there are potentially large changes in PRSA between 

approximately 20 to 30 weeks of gestation. Subsequently, 

we assessed the difference between features from the 22 – 

25 weeks of gestation and 28 – 31 weeks of gestation bins 

(Table 1). The change between bins is significant (p < 0.01) 

for all features, with AC, IDR, and SDR having small to 

medium effect sizes and IAR and SAR having medium to 

large effect sizes.  

 

Table 1: Differences in PRSA features between two GA 

bins, namely 22 to 25 weeks and 28 to 31 weeks. 

Significance (p-value) and effect sizes (U1) are reported.  

Features p-value U1 

AC < 0.001 0.137 

DC 0.005 0.098 

IAR < 0.001 0.373 

IDR < 0.001 0.255 

SAR < 0.001 0.392 

SDR < 0.001 0.275 

4. Discussion 

PRSA is a promising methodology for assessing fetal 

autonomic regulation. Not only have researchers 

demonstrated its potential use in identifying fetal 

complications [1,6] but the robustness of the method to 

missing data makes it well suited to fetal monitoring, 

where data quality is often a problem. However, as 

demonstrated in this paper, it is important to take GA into 

account when interpreting PRSA features.  

Limited work has been done to investigate changes in 

PRSA with GA. Although Graatsma et al. found that GA 

had a very limited effect on PRSA features, they observed 

similar trends in AC and DC: namely, an increase (in 

absolute terms) leading up to approximately 30 weeks and 

followed thereafter by a decrease [12]. Furthermore, 

Stampalija et al. found no differences in AC and DC 

between 26 to 30 weeks and 30 to 34 weeks of gestation 

[13]. Neither accounted for fetal behavioral states. When 

we performed a comparison between these two GA ranges 

in our data, we similarly found no significant difference in 

AC and DC. 

However, the differences between the 22 to 25 weeks 

bin and the 28 to 31 weeks bin are significant. While the 

effect sizes are small in the case of AC and DC, they are 

medium to large for IAR and SAR. Considering these 

results as well as the graphs in Figure 1, it is evident that 

fHRV (as assessed with PRSA) continuously changes as 

the gestational weeks progress. This also illustrates the 

potential pitfalls of comparing between gestation groups 

with a large range, for example comparing fHRV between 

the second and third trimester, as changes might be missed.  

We hypothesize that these apparent changes in the 

graphs in Figure 1 reflect the maturation of the fetal ANS. 

From about 25 weeks of gestation, the PNS is starting to 

rapidly develop until approximately 32 weeks of gestation 

[2]. In all features, an increase is apparent during this time, 

suggesting that the heart rhythm can now change more 

rapidly and with larger fluctuations due to the developing 

PNS. After 32 weeks, there is a stabilization or decrease in 

features. This may be a result of the increased vagal control 

at this stage, as well as a well-developed SNS that changes 

the HR corresponding to fetal movements [2].  

At about 29 weeks, myelination of the vagal nerve 

occurs [14], which allows for quicker signaling between 

nerve cells. Interestingly, the sharpest absolute increase 

can be observed in SAR and SDR at this timepoint, which 

suggest an increase in the rate of the parasympathetic 

response echoing the completion of the myelination 

process.  

Still, our analysis is limited. We lack information on the 

fetal behavior state, which is known to influence fHRV. 

Since some recordings had poor data quality, we only use 

5-min recordings for our analysis, while a PRSA analysis 

would be strengthened by longer recordings (which 

translate to more APs.) The length of the signal segments 
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analyzed (=5 min), further compounds the unknown 

influence of the fetal behavioral state, since each segment 

may represent only a single fetal state, while in a longer 

recording having the presence of different behavioral states 

may decrease the impact of the limitation.  

Yet, despite not stratifying recordings per behavioral 

state, the dynamic evolution of PRSA features with 

progressing pregnancy is evident and seems to echo 

different stages of the development of the fetal ANS. It is 

also clear that the differences in features between certain 

points in gestation can be large and GA should be 

accounted if these features would be used for clinical 

interpretation. In conclusion, we believe that PRSA 

analysis is a potentially useful tool for tracking fetal 

autonomic development.   
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